Quality Diversity: A New Frontier for Evolutionary Computation
نویسندگان
چکیده
While evolutionary computation and evolutionary robotics take inspiration from nature, they have long focused mainly on problems of performance optimization. Yet, evolution in nature can be interpreted as more nuanced than a process of simple optimization. In particular, natural evolution is a divergent search that optimizes locally within each niche as it simultaneously diversifies. This tendency to discover both quality and diversity at the same time differs from many of the conventional algorithms of machine learning, and also thereby suggests a different foundation for inferring the approach of greatest potential for evolutionary algorithms. In fact, several recent evolutionary algorithms called quality diversity (QD) algorithms (e.g., novelty search with local competition and MAP-Elites) have drawn inspiration from this more nuanced view, aiming to fill a space of possibilities with the best possible example of each type of achievable behavior. The result is a new class of algorithms that return an archive of diverse, high-quality behaviors in a single run. The aim in this paper is to study the application of QD algorithms in challenging environments (in particular complex mazes) to establish their best practices for ambitious domains in the future. In addition to providing insight into cases when QD succeeds and fails, a new approach is investigated that hybridizes multiple views of behaviors (called behavior characterizations) in the same run, which succeeds in overcoming some of the challenges associated with searching for QD with respect to a behavior characterization that is not necessarily sufficient for generating both quality and diversity at the same time.
منابع مشابه
Pareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملSolving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملA New Frontier for Computational Intelligence
Approaches to computational intelligence, including neural networks, fuzzy systems and evolutionary computation, are converging to a common frontier --autonomous mental development (AMD). This article explains what AMD is and why computational intelligence can fully expand its power at this frontier. As an example, this paper discusses a theory, an architecture, and some experimental results of...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملA New Method for Geolocating of Radiation Sources Based on Evolutionary Computation of TDOA Equations
In this article a new method is introduced for geolocating of signal emitters which is based on evolutionary computation (EC) concept. In the proposed method two well-known members of EC techniques including Bees Algorithm (BA) and Genetic Algorithm (GA), are utilized to estimate the positions of emitters by optimizing the hyperbola equations which have been resulted from Time Difference of Arr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Front. Robotics and AI
دوره 2016 شماره
صفحات -
تاریخ انتشار 2016